אלקטרו מגנטיות וספינטרוניקה

מדעני הננו-מגנטיזם ב-BINA חוקרים תופעות מגנטיות חדשניות ומפתחים מכשירים ספינטרוניים מתקדמים באמצעות ננו-חלקיקים מגנטיים, שכבות מגנטיות דקות והטרו-מבנים. בנוסף חוקרים את ההשפעה ההדדית של מגנטיזם ומוליכות-על וכן הופעת תופעות מגנטיות בחומרים ובממשקים השונים. חוקרי המכון משתמשים בהתקני ננו-ייצור על מנת לפתח חיישנים מגנטיים חדשניים ומכשירי זיכרון בעלי השפעה פוטנציאלית עצומה על טכנולוגיות חיוניות. מאמץ משמעותי של החוקרים מופנה גם לתחום הרפואה, שם מנסים לפתח מכשירים ופרוצדורות שמנצלות את המגנטיזם למטרות אבחנה וטיפול.

  • מגנטיות בממד נמוך ומוליכות-על
  • מערכות אלקטרוניות בממד ננומטרי
  • תכונות הולכה של שכבות לא מסודרות וגרנולריות
  • הולכה מגנטית בשכבות דקות של פרובסקייטים מגנטיים
  • אפקט "Giant Planar Hall" במנגניטים
  • היברידים מוליכי-על פרו-מגנטיים
  • תכונות מגנטיות של ננו-חלקיקים
  • תאוריית ספקטרוסקופיה של מולקולה בודדת ופוטון בודד
  • מכניקה סטטיסטית ותופעות מוליכות (transport phenomena) במערכות מזו- וננו
  • ספינטרוניקה של ננו-מבנים לטרליים – איפיון ואפליקציות

Researchers

  • Nano-scale crystallization phenomena

    Our group is developing approaches that utilize nano-scale systems for studies of crystallization phenomena and mechanisms that determine the morphologies of crystals. Insight from this research can lead to very useful technological applications, as understanding crystal growth mechanisms will allow us to better control crystalline products of chemical synthesis. This view is inspired by treating nano-crystals as “embryonic” stages of crystal growth. In a sense, every crystal begins its evolution as a nano-crystal. The huge advantage in studies that follow this perspective is in our ability to utilize extremely powerful electron microscopy methods, including a novel technique that allows us to perform high resolution electron microscopy directly in liquid solutions. In this way we can retrieve details of the crystal structure and overall shape at remarkable resolution, during the crystal’s initial formation. These details are often hidden in bulk crystals, unidentifiable by X-ray crystallography, yet critical for understanding of the mechanisms by which crystals grow.

  • The Lab for Quantum Imaging

    The lab is focused on using quantum sensors for imaging various physical properties at the nanoscale. The two main sensors are a sensor for electric potentials based on carbon nanotubes and a sensor for magnetic fields based on Nitrogen Vacancies (NV) in diamonds. Those sensors have a unique combination of small dimensions and extremely high sensitivity,
    allowing us to use them for sensing minute fields at the nanoscale. The current projects focus on combining these two unique sensors to overcome many of the limitations of each system. For example, read the NV center’s quantum state using a charge detector made of a carbon nanotube. A second example is using the NV center for probing the electron state on the carbon nanotube with quantum coherence. These projects will pave the way for a quantum imaging technique that probes the quantum nature of a system at the nanoscale.

  • Fundamental physics & Applied Physics

    Electro Magnetism & Spintronics

    • Condensed matter physics
    • Magnetism
    • Superconductivity

  • Nano-optics and Light–matter interactions in metamaterials

     Examples of optically resonant nanostructures comprising single nanoparticles, thin film and full metasurface arrays

    • Light-matter interactions
    • Nanophotonics
    • Metamaterials
    • Plasmonics
    • IR nanospectroscopy
    • 2D materials

  • Graphene Composites for Sensor Applications

    • Graphene Electronics
    • Two Dimensional Semiconductors
  • Broadband Quantum Optics

    • Optical bandwidth as a resource for quantum information: Novel schemes for quantum measurement and sources of broadband squeezed light
    • Sub shot-noise interferometry and coherent Raman spectroscopy (quantum CARS) using broadband squeezed light.
    • Visualization and manipulation of fast vibrational dynamics in molecules with optical frequency combs
    • The physics of mode-locked lasers: new sources of ultrashort pulses and frequency combs

  • Electronic properties of low dimensional systems

    We study the electric properties of different nanosystems in which the electrons feel a random potential and exhibit unique quantum behavior

    • Thin film growth: Thermal evaporation, e-beam evaporation UHV techniques and quench- condensation methods.
    • Advanced Lithography: Electron beam nano-lithography and Photo-lithography, ion milling, reactive ion milling, chemical etching and other processing techniques applicable to sub-micron electronics.
    • Microscopy: Scanning and transmission electron microscopy, scanning tunneling microscopy (STM) and atomic force microscopy (AFM).
    • Low Temperature: Cryogenic measurement techniques, low noise measurements, dc and ac (lock-in) techniques, high field magneto-transport measurements.

  • Multi-level magnetic memory

    The cover page of Applied Physics Letters presenting a picture of structures in the form of N magnetic crossing ellipse that support 22N discrete magnetic states.

    • Magneto-transport in thin magnetic films (particularly ruthenates and manganites)
    • Anisotropic magnetoresistance and giant planar Hall effect
    • Current induced manipulation of domain walls
    • Macroscopic quantum tunneling
    • Transport properties of LAO/STO interfaces
    • Magnetic sensors and memory

  • Sensitive magnetic imaging

    Sensitive magnetic imaging reveals stripy current flow at the interface between two oxides, which is related to the structure of strontium titanate

    • Superconductivity
    • Nano-magnetism
    • Bio-magnetism
    • Scanning SQUID microscopy
    • Complex oxid interfaces
    • Nano-electronics

  • Mesoscopic Physics

     

    • Semiconductor Physics
    • Quantum information
    • Superconducting circuits
    • Hybrid Quantum Systems
  • Raman scattering spectra in irradiated graphene

    Electro Magnetism & Spintronics

    Experimental studies of transport phenomena and electronic properties of disordered solids:
    • doped semiconductors
    • impure metals
    • conducting polymers
    • hopping conductivity
    • magnetoresistance
    • metal-insulator transition
    • electron-electron interactions

  • Phase transitions on the nano-scale

     

    • Spintronics
    • New Temperature Coefficient of Resistance (TCR) materials
    • Organic/SC hybrid