Electro Magnetism & Spintronics
From fundamental studies of the magnetic properties of materials, to the fabrication of new materials for use in spintronics-based applications, to the integration of these materials in advanced devices, researchers in the BINA Nano-Magnetism Center are making dramatic contributions to the science that will lead to novel devices for communication, medicine and industry.
- Low-dimensional magnetism and superconductivity
- Nano-sized electronic systems
- Transport properties of disordered and granular films
- Magneto-transport in thin films of magnetic perovskites
- Giant planar Hall effect in manganites
- Ferromagnetic-superconducting hybrids
- Magnetic properties in nanoparticles
- Theory of single-molecule and single-photon spectroscopy
- Statistical mechanics and transport phenomena in meso- and nanosystems
- Spintronics of nano-scaled lateral structures, phenomena and applications
Researchers
-
Dr. Eliahu Cohen
972-3-738-4268From Quantum Foundations to Optical Quantum Technologies
We study various topics related to basic quantum science, as well as quantum technologies. Currently, the main theme is quantum correlations which beg for a better theoretical understanding, as well as novel applications. The primary tool we use throughout our exploration is quantum optics.
-
Prof. Amos Danielli
972-3-738-4653Optical Imaging and Biosensing Laboratory
• Rapid and highly sensitive detection of biomarkers, such as proteins and specific DNA sequences
• Detection of protein-protein interactions
• Magnetic manipulation of nanoparticles, design of magnetic poles, magnetic force optimization -
Prof. Aviad Frydman
972-3-531-8102Electronic properties of low dimensional systems
• Thin film growth: Thermal evaporation, e-beam evaporation UHV techniques and quench- condensation methods.
• Advanced Lithography: Electron beam nano-lithography and Photo-lithography, ion milling, reactive ion milling, chemical etching and other processing techniques applicable to sub-micron electronics.
• Microscopy: Scanning and transmission electron microscopy, scanning tunneling microscopy (STM) and atomic force microscopy (AFM).
• Low Temperature: Cryogenic measurement techniques, low noise measurements, dc and ac (lock-in) techniques, high field magneto-transport measurements. -
Prof. Beena Kalisky
972-3-738-4339Sensitive magnetic imaging
• Superconductivity
• Nano-magnetism
• Bio-magnetism
• Scanning SQUID microscopy
• Complex oxid interfaces
• Nano-electronics -
Prof. Lior Klein
972-3-531-7861Multi-level magnetic memory
• Magneto-transport in thin magnetic films (particularly ruthenates and manganites)
• Anisotropic magnetoresistance and giant planar Hall effect
• Current induced manipulation of domain walls
• Macroscopic quantum tunneling
• Transport properties of LAO/STO interfaces
• Magnetic sensors and memory -
Prof. Doron Naveh
972-3-531-4657Graphene Composites for Sensor Applications
- Graphene Electronics
- Two Dimensional Semiconductors
-
Prof. Sharon Ruthstein
972-3-7384307Biomolecular EPR Spectroscopy lab
• plasmonics
• molecules-surface plasmons interaction
• molecular dynamics
• strong coupling systems
• Near field spectroscopy
• Second Harmonic Generation (SHG) -
Prof. Amos Sharoni
972-3-738-4516Phase transitions on the nano-scale
- Spintronics
- New Temperature Coefficient of Resistance (TCR) materials
- Organic/SC hybrid
-
Prof. Issai Shlimak
972-3-531-8176Raman scattering spectra in irradiated graphene
Experimental studies of transport phenomena and electronic properties of disordered solids:
• doped semiconductors
• impure metals
• conducting polymers
• hopping conductivity
• magnetoresistance
• metal-insulator transition
• electron-electron interactions -
Dr. Michael Stern
972-3-531-4458Mesoscopic Physics
- Semiconductor Physics
- Quantum information
- Superconducting circuits
- Hybrid Quantum Systems
-
Prof. Shimon Weiss
972-3-738-7313Voltage Nanosensors for brain research
• Single molecule detection and spectroscopy,
• Dynamic structural/molecular biology,
• Protein folding, protein-protein and protein-DNA interactions,
• Novel Bio-Nano-Technology probes, semiconductor nanocrystals, quantum dots, semiconductor nanocrystals voltage
sensors
• Fluorescence microscopy/spectroscopy,
super resolution microscopy
• Mesoscopic systems -
Prof. Yosef Yeshurun
972-3-531-8369Fundamental physics & Applied Physics
• Condensed matter physics
• Magnetism
• Superconductivity