Innovative Research

ניצןExciting Breakthrough in Testis Modeling: Introducing Testis Organoids!

Dr. Nitzan Gonen's latest paper presents a significant advancement in the field of male reproductive health research by establishing the first-ever testis organoid model. This innovative model holds immense potential for understanding and treating disorders of sex development and male infertility.




MADINAA recent study delving into the effects of Ga ion irradiation on freestanding monolayer graphene, with a specific focus on the behavior of defect-induced Raman lines, was initiated by Nahum Shabi and published in Surfaces and Interfaces. The article was authored by three members of the BINA team: Nahum Shabi, Dr. Olga Girshevitz, and Dr. Madina Telkhozhayeva.





rachela EIC grant for nanoparticle-based research for cancer treatment
Prof. Rachela Popovatzer from the Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials won a grant of €150,000 for research aimed at making drug treatment more effective and focused

What will the next generation of cancer drugs look like? What will make them more effective and focused? The European Union is investing in the implementation of an innovative Israeli project based on gold nanoparticles, for the more effective treatment of various cancers, including breast cancer. Behind the study is Prof. Rachela
Popovatzer, Vice Dean of the Kopkin Faculty of Engineering and a leading researcher at the Institute of Nanotechnology and Advanced Materials at Bar-Ilan University. Prof. Popovatzer's innovative project, called Golden-ADC, proposes a new concept for combining antibodies and chemotherapy drugs in the treatment of tumors, such as those characteristic of breast cancer.
Popovatzer's patent is based on insulin-coated gold nanoparticles, which serve as an innovative platform for transporting antibody-based drugs (ADCs) to tumor areas. The use of gold nanoparticles makes it possible to overcome a number of challenges that have faced biological treatment to date, including how the drug binds to the antibody. This greatly improves the effectiveness of treatment. "As part of the Golden-ADC project, we envision achieving significant progress in the development of the technology, by demonstrating a proof-of-concept that combines efficacy and safety in triple-negative breast cancer models," notes Prof. Popovatzer.
The European Research Council also believes in Prof.
Popovatzer's project, and therefore awarded him the EIC (Proof of Concept Grant) of 150,000 euros. This grant funds researchers previously supported by the European Research Council, enabling them to advance their ideas from the groundbreaking research phase towards practical applications of the findings, including the first stages of commercial use.
This is not the first time Prof.
Popovetzer has been awarded a grant from the European Union. In March 2022, she was awarded the Council's Consolidator Grant for the innovative research project BrainCRISPR, which presented a novel gold nanoplatform for inserting CRISPR biomolecules into the brain to cure rare genetic brain diseases.

אלי כהןExciting breakthrough! New article written by Dr. Eliahu Cohen's group, in collaboration with Prof. Ernesto Galvão's group at INL, introduces a novel approach that connects and unifies key quantities crucial in quantum computation, sensing, simulation, and communication. The work presents Bargmann invariants as foundational building blocks, revealing unique quantum properties. Coherence, a fundamental phenomenon across physics, underlies these quantities, broadening its scope beyond conventional optics towards sets of quantum states. "Our quantum circuits, developed through this approach, enable straightforward measurement of important quantities using quantum computers", says Dr. Cohen. The research is a result of a two-year collaboration with INL, initiated and partially funded by BINA.


Innovative ResearchNew article written by Prof. Orit Shefi in collaboration with Prof. Ester Segal from the Technion, demonstrating targeted cancer treatment by biolistic delivery of porous silicon chips loaded with light activated drug.