Microcavity Laser Based on a Single Molecule Thick High Gain Layer

The ability to confine excitons within monolayers has led to fundamental investigations of nonradiative energy transfer, super-radiance, strong light matter coupling, high-efficiency light emitting diodes, and recently lasers in lateral resonator architectures. Vertical cavity surface emitting lasers (VCSELs), in which lasing occurs perpendicular to the device plane, are critical for telecommunications and large-scale photonics integration, however strong optical self-absorption and low fluorescence quantum yields have thus far prevented coherent emission from a monolayer microcavity device. Here we show lasing from a monolayer VCSEL using a single molecule thick film of amphiphilic fluorescent dye, assembled via Langmuir-Blodgett deposition, as the gain layer. Threshold was observed when 5% of the molecules were excited (4.4 mu J/cm(2)). At this level of excitation, the optical gain in the monolayer exceeds 1056 cm(-1). High localization of the excitons in the VCSEL gain layer can enhance their collective emission properties with Langmuir-Blodgett deposition presenting a paradigm for engineering the high gain layers on the molecular level.

Last Updated Date : 19/03/2018